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ABSTRACT 

The temperature distributions that occur inside a 
steadily rotated cylindrical vortex tube with porous walls 
having steady radial inflow of an essentially incompressible 
fluid are obtained. The nature of the distributions for 
both liquids and gases is discussed. The results are com
pared with Rott 1 s results for Burgers 1 unbounded vortex. 
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1. Introduction 

In reference 1 (hereafter referred to as Part I) a 
class of solutions of the Navier-Stokes equations for the 
steady flow of an incompressible viscous medium are dis
cussed in some detail. These flows are such that in terms 
of a cylindrical coordinate system (r, e, z), the respective 
velocity components (u, v, w) are of the form 

(1.1) 

u = u(r) 

v = v(r) 

w = zw(r) 

and the pressure is of the form 

(1.2) p = ~pcz2 + p(r) 

where p is the density and C is a constant. It has been 
pointed out by Donaldson (reference 2) that, for such "essen
tially incompressible" flows, the energy equation can be 
easily solved for temperature distributions of the form 

(1.3) 

In the present part (Part III), we give the results of 
a brief study of the nature of such temperature distributions, 
partly for the sake of completeness and partly because of a 
general interest in temperature distributions within vortex 
flows. The results that are obtained are closely related to 
the work of Rott (reference 3) who studied the temperature 
distributions in a free or unbounded vortex of the form 
u = -ar, v = v(r), and w = 2az. Tne present study shows 
that the temperature distributions in confined vortices are 
very similar to those of free vortices. 



Attention is confined to vortices of the family desig
nated I-1 in Part I, i.e. single-cell vortices in which 
the flow spirals inward from a porous wall at r ~ R and 
out along the axis. One boundary condition on the tempera
ture is taken to be 

(1.4) T(R, z) = Tw ~ constant 

The only other condition needed is that the temperature 
remain finite on the axis. 
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2. The Energy Equation 

In Part I (pp, 16-22) the energy equation is discussed 
in detail. Tvw forms, one for gases and one for liquids, 
which are consistent with the constant density solutions of 
the continuity and momentum equations given in Part I are 
deduced. The equation for gases, suitable for cases in 
which the Mach number associated with the tangential veloc
ity, v, is appreciable while that associated with u or w 
is negligible, is; subject to (1.1), 

( 
oT oT) nuv

2 (c2
T 1 dT o

2
T) (2.1) pc u -- + w- - r- = k -- + -- + -- + w11 

p or oz r or2 r or oz2 

where the dissipation is 

(2.2) 

As usual 
and k 

w n = IJ.c~v - v)2 
dr r 

cp denotes the specific heat at constant pressure 
the the~mal conductivity, both assumed constant. 

For liquids it is shown in Part I that the energy 
equation, again subject to (1.1), is 

( 2.3) 

*In Part I, (1.5.23) is written i:1ecrrectly. Tl!.e terms 

+ £E.+ puv
2 

at r 
should read _ ~-:R _ puv2 

2Jt r 
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where the dissipation is 

As pointed out by Goldstein (reference 4), there has 
been some confusion in the literature about the correct form 
of the energy equation for the case of "nearly incompressi
blerr fluids. T'.ne forms given above are believed to be the 
most useful and are consistent with both the recent work of 
Rott (reference 3) and the suggestions of Goldstein. 

The necessity of assuming that the Mach number associa
ted with u or w is negligible leads to a very simple 
expression for the dissipation for gases, q;n, which makes 
the solution relatively easy. The more complicated form 
for liquids, q;r, makes the solution more involved but 
gives a greater richness of information. 

In ( 2.1) through ( 2.4), u, v, and w are known 
functions that are determined by the methods outlined in 
Part I. It is desirable at this point to review briefly the 
way the solutions of family I-1 are obtained. First, the 
following non-dimensional variables are defined: 

( 2.5) X = cr2/R2 

(2.6) F(X) = - 1ur/v 
2 

( 2. 7) H(X) = (vr/VR)H(c) 

where v is the value of v at the wall, v = ~/p, and 

(2.8) 2 -cR4/( 16v 2 ) c = 



Here C is the pressure-gradient constant appearing in 
(1.2); it is always negative for family I-1, so c is 
real. The equation of continuity now shows that 

(2.9) w = zw = 4c(v/R)(z/R)F 1 

where the prime denotes differentiation with respect to X. 
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As shown in Part I~ pp. 34-38, F and H are governed 
by the equations 

(2.10) 

(2.11) 

( XF If ) ' + FF II - F I 
2 + 1 = 0 

XH" + FH' = 0 

These equations are integrated numerically with the initial 
conditions given by 

(2.12) F(O) = 0~ F 1 (0) =A, F"(O) = A2 - 1 

(2.13) H(O) = O, H'(O) = B 

where the constant A is (for family I-1) between 0 and 
1, and the constant B is arbitrary. Since it is speci
fied as a boundary condition that w = 0 at the wall r = R, 
it is seen from (2.5) and (2.9) that F 1 (c) = o. Hence for 
each A in (2.12) integration of (2.10) continues to the 
first (for family I-1) zero of F'. The value of X at 
which it occurs determines the value of c corresponding to 
the particular A. Integration of (2.11) can be performed 
simultaneously or separately. The other characteristics of 
the flow are determined from the knowledge of the functions 
F and H. 

Accordingly {2.1) and (2.3) are rewritten in terms of 
the dimensionless variables and at the same time the assump
tion (1.3) is introduced in the modified form: 
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(2.14) 

It is found that each term is either independent of z or 
else multiplied by (z/R) 2. Since the equality must hold for 
all values of z, 
(2.1) and (2.3). 

(2.15) 

(2.16) 

two equations are deduced from each of 
For gases they are 

r r 1 1 
(XT0 ) + PrFT = - - T 

0 2c 2 

2 [ 2 ( + Pr V c F !L _ H r 
c H2 (c) 2 x2 

p 

while for liquids they are 

(2.17) 
I r 2 2 2 

(XT2 ) + Pr(FT; - 2F
1 T2 ) = -16 Pr : ; 2 XF" 

(XTOI) I p pm' + r .J:o 

(2.18) 

p 

= - ic T2 -16 Pr :2:2[F•2 - F' :X+ (~f] 
p 

In these equations Pr is the Prandt1 number, ~cp/k. 

In both sets the boundary conditions are that T0 
and T2 be finite at the origin, i.e. 

(2.19) 

and, by (1.4) and (2.5), 

(2.20) 



7 

3. Solution in the Case of Gases 

We define the function G(X) to be the solution 
(determined numerically) of the differential equation 

(3.1) (XG' )' + PrFG' = Pr[~ ~ - (a• - iYJ 
with the initial conditions 

(3.2) G(O) = 0_, 

Further, we define 

(3.3) 

Then it can be verified that the set 

(3.4) 

(3.5) 
v2 

To= Tw + c AG 
p 

is a solution of (2.15) and (2.16) which satisfies the bound
ary conditions (2.19) and (2.20). 

The computations have been made for a range 

Reynolds number Nu = UR/v, where U = u(R) < 0 
I-1), and for two values of the Prandtl number, 
and Pr = 1. Typical distributions of 

(3 .6) 

of the 
(for family 

Pr = 1/2 



are shown in Figures 3.1, 3.2, and 3.3. Figure 3.4 shows 
the variation of the minimum value 

with Reynolds number. These results are discussed in 
Section 5. 
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Fig. 3.2 Temperature distribution for gases at NU = -5.38. 
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Fig. 3.3 Temperature distribution for gases at NU -16.0. 



0 10 -Nu 2.0 
0 ~~---------------.,------------------.----

-I 

-3 

-4 

Fig. 3.4 Minimum of AG as a function of Reynolds number. 



4. Solution in the Case of Liquids 

The technique of solution in the case of liquids is 
similar to that just outlined for gases, but considerably 
more involved. We define five functions, A2, B2, AF, 
AT, and AH, through their differential equations and 
initial conditions as follows 

r 
+ Pr(FA~ - 2F'A ) -PrXF"2 (4 .. 1) (xA;) = 2 

(4.2) A2(o) = c, A;(o) = 2PrAC 

I 
Pr(FB~ - 2F'B ) (4.3) (XB~) + = 0 2 

(4.4) B2(o) = D, B~(o) = 2PrAD 

(4.5) (XA~) r + PrFA~ =- Pr[F 
1 2 - F 

1 ~ + (:X)2] - ~ A2 

(4.6) AF(O) o, A;(o) = - 3 PrA2 1 
= -- c 4 2 

I I (4.7) (XA~) + PrFAT = B2 

(4.8) AT(O) = o, A~(O) = D 

(4.9) (XA~) r ' + PrFAH=- Pr (H' - ~)2 
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In these equations C and D, like B in (2.13), may be 
given any value which is convenient in the numerical integra
tion. Further, we define 



(4.11) 

(4.12) 

and 

( 4.13) 

where 

(4.14) 

Then it can be verified that the set 

( 4.15) 

(4.16) U2 v2 
T =T +-A +-A__ 0 w c 0 c --v p p 
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is a solution of (2.17) and (2.18) which satisfies the bound
ary conditions (2.19) and (2.20). 

Again the computations have been carried out for a range 
of the Re~molds number NU and for two values of the Prandtl 
number, Pr = 1/2 and Pr = 1. Typical distributions of 
A0 , A2, and Av are shown in Figures 4.1, 4.2, and 4.3. 
Figure 4.4 shows the variation of the maxima of the same 
quantities with Reynolds number. 

From (2.14), (4.15), and (4.16) we find 

(4.17) cP(T - Tw) = u2[ Ao + (~2A2] + v2Av 
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Fig. 4.1 The A functions for liquids at NU = -1.48. 



Fig. 

I 

R - I 
t"- 2: 

0 ~--------------~--------------~ o .s- L J.o 
(( 

Pr- =- 1 

I 

0 
0 -~ r J.o -R 

4.2 Tl:le A functions for liquids at Nu = -5.38. 



/.!i 

.$' 

.s-

.s-

0 
0 .s 

n - I rr- 2. 

r -i 

/.0 

1·0 

Fig. 4.3 The A functions for liquids at NU = -16.0. 
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Thus for small z/R~ Av may be interpreted as 

(4.18) 
c {T - T ) 

Av = P v2 w 

11 

if V is sufficiently large compared to U while A0 may 
be interpreted as 

(4.19) 
c (T - T ) 

A - P w o - u2 

if U is sufficiently large compared to V. But note from 
Figures 4.1 and 4.4 that when !Nul is small V must be 
very much larger indeed than U for the Av term to dominate~ 
and that when (Nul is large~ the opposite is true. Of 
course, for z/R sufficiently large, A2 may be interpreted 
as 

{4.20) 

These results are discussed further in the following 
section. 
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5. Discussion 

From the physical point of view, the most interesting 
aspect of the results is probably the disparity in the 
behavior of liquids and gases. That is, liquids are heated 
as they move toward the center but gases are cooled. This 
phenomenon was pointed out by Rott (reference 3) for a free 
or unbounded vortex. The heating in the case of liquids is 
due to the dissipation. The dissipation is still present in 
the case of gases of course but it is more than counter
balanced by the cooling due to expansion as the gases approach 
the low pressure region near the center of the vortex. 

In reference 3 only the dissipation due to the tangen
tial velocity is considered in the solution so in the case of 
liquids it is appropriate to use the approximation (4.18) in 

comparing results. But Av in that approximation and AG 
for gases, by (3.6) represent the enthalpy difference divided 
by v2, and V has no meaning for Burgers• solution (on 
which Rott 1 s work is based) since that solution represents an 
unbounded vortex. Rott presents his results in terms of the 
enthalpy difference divided by H* where H* is defined in 
terms of the circulation at infinity. This, of course, has 
no meaning for the present solutions. However, Rott shows 

2 that H* = 1.22 vm where vm is the maximum value of v, 
and this provides a basis for comparison. Accordingly, the 

quantity cp(T0 - Tw)/(1.22 v~) where To represents the 
temperature at the origin, has been calculated from the 
formula 

for gases, and 

cp(T0 - Tw) = 
1.22 v~ 

cp{T0 - Tw) = 
1.22 vi 

2 
V A (0) 

1 22 v2 G • m 

2 
V Av(O) 

1.22 v~ 
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for liquids, where the appro~imation (4.18) has been assumed. 
Figure 5.1 shows the variation of this quantity with Nu· 
Also indicated in the figure are the values obtained by Rott 
for liquids with infinite Prandtl number and for gases with 
Pr = 1/2, Pr = 1, and Pr = oo. These are labeled Nu = -oo 

since the vortex considered has no boundary at a finite 
radius. 

The present results seem to approach asymptotic values 
as !Nul increases but it is not clear that for gases they 
approach the values given by Rott. If not, the difference is 
probably due to the fact that at large Reynolds numbers the 
solutions of family I-1 are more like the so-called cosine 
solution than like Burgers• solution. In particular, the 
axial velocity distribution is more like 

w(z, r) ~r~ w(z, 0) = cos 2 R2 

than is like 

w(z, rl = 1 
w(z, 0) 

(See Part I, p. 50 and p. 64). Thus it is quite likely that 
the temperature difference approaches something other than 
Rott's value as Nu approaches minus infinity. 

The distributions of A2 showa in Figures 4.1J 4.2, and 
4.3 illustrate an interesting effect, namely that at large 
enough z, by the approximation (4.20), the maximum tempera
ture is not on the centerline r = 0 but rather at a radius 
greater than R/2. This behavior is due to the fact that at 
large z the fluid entering through the porous wall with 
w = 0 must turn rapidly and acquire a .substantial axial 
velocity component. This involves a large contribution to 
the dissipation near the wall. In fact the very presence of 
the A2 contribution to (4.17) can be traced to the term 
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~(dw/dr) 2 (which is proportional to z2 ) in the dissipation 
~~ given by (2.4). The fluid near the centerline is cooler 
since it entered at a smaller z and thus experienced a 
milder dw/dr and less dissipation. 

These observations serve as a reminder that the solu
tions for gases are not valid for large z where the Mach 
nlimber associated with w becomes appreciable. 
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